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Abstract. We define dynamic models as multiperiod models with no static representations and 
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static models in all TEQ, we show that this is the case even the “minimal” dynamic equilibria. 
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1 Introduction 

Current asset pricing literature stands on two “legs,” static and dynamic. Representatives of the 

first include Markowitz (1952), Sharpe (1963, 1964)-Lintner (1965)-Mossin (1966) single-period CAPM, 

and multifactor extensions [e.g., Fama and French (1992, 2015)], which, in fact, are single-period linear 

beta pricing models.1 Representatives of the second include Samuelson (1969), Merton (1971, 1973), Lucas 

(1980), Cox, Ingersoll and Ross (1985a,b), Epstein and Zin (1989), Epstein (2001), and Hansen and Sargent 

(2001), which are multiperiod models with stochastic investment opportunities and with potentially, 

exchange, production, capital markets, intermediate consumption, incomplete information, ambiguity, and 

model uncertainty.2 For brevity, we will call the latter multiperiod models and their derivatives “Merton 

models.” 

We call models static if they are either single-period or multiperiod with a single-period 

representation, that is, where in each and every period the analysis becomes a single-period one.3 We call 

models “dynamic,” if they are multiperiod with no single-period representation. 

In the context of these two approaches to asset pricing, three essential questions have arisen (TEQ): 

i. Does the analysis map into a mean-variance (MV) one? Alternatively, is there dependency on 

higher moments? 

ii. Are risk premia (expected returns4 in excess of the risk-free rate) “simple”? We call risk premia 

“simple” if they are similar to single-period ones, and “complex” if they are similar to those in 

“Merton models.” The latter include additional term(s) relating to intertemporal rates of 

substitution.5 

 
1  See also Merton (1972), Black (1972), Roll and Ross (1995), Kandel and Stambaugh (1995), Jagannathan and Wang 
(1996), Feldman and Reisman (2003), Bick (2004), Ukhov (2006), and Diacogiannis and Feldman (2013). 
2 See also Kreps and Porteus (1978), Dothan and Feldman (1986), Detemple (1986), David (1997), Feldman (2007), 
Björk, Davis and Landén (2010), Leisen (2016), and Leisen (2018). 
3 The latter are multiperiod models that map (degenerate) into single-period ones, or sequences of these, due to, for 
example, path independence, dependency on final outcomes only, Martingale representation methods, myopic 
preferences, or periodically independent returns. See Feldman (1992) findings on multiperiod equilibria with myopic 
optimal decisions. 
4 For brevity and simplicity, we will use the term “returns” also for “rates of return.” 
5 These are optimal demands induced by stochastic changes in future investment opportunities, which Merton called 
“hedging demands.” 
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iii. Is the pricing kernel/stochastic discount factor (SDF)/market portfolio MV efficient? 

The literature characterizes differences in answering these TEQ for static models and only a subset 

of “dynamic” models, the Merton models. Thus, the disparity/overlap in characterizations between static 

and other dynamic models, with respect to our TEQ, has not been fully explored. We know that the answers 

to TEQ for static models is “yes,” “yes,” and “yes,” and for Merton models is “no,” “no,” and “no.” In 

this paper we ask, whether there exist dynamic models with answers to the TEQ that are different from the 

answers to Merton models, thus, more similar to the answers for static models. 

Another way to describe the lacuna in the literature is as follows. We know that single-period 

representations of multiperiod models are sufficient for answering the TEQ with yes, yes, and yes, but we 

do not know if this is necessary. 

Such characterizations are necessary, for example, for understanding the implications of empirical 

asset pricing implementations that, as a matter of common practice, use static models in multiperiod 

contexts. We note that these types of implementations are almost exclusively used in finance disciplines 

other than asset pricing. In other words, are there dynamic models that are consistent with the predominant 

asset pricing implementations? 

Clearly, if there exist dynamic models with answers to the TEQ that are different from those of 

Merton models and similar to those of static models, they are likely to be among the “simplest” ones. Thus, 

we set, as our first objective, to identify a “minimal dynamic equilibrium” (MDE). Specifically, a dynamic 

model with the simplest structure in terms of number of periods, endowments, stochastic structure, 

information structure, and plausible preferences. 

Our second objective is to answer our TEQ with respect to the MDE. In other words, can we identify 

MDE similar to static models in answering some or all three of the TEQ. 

Our results are as follows. We identify an MDE that is minimal in all dimensions:  it has MV risk-

averse representative investor who maximize, over two periods, arithmetic mean returns (possibly of 

elliptical distribution functions) of investments in one riskless and numerous risky assets. 

The answer to the first TEQ is no:  we find that in our MDE there is no riddance of the dependency 
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on higher moments. That is, moments higher than variance do play a prominent role. The relevance of 

higher moments in risk premia was documented empirically [Harvey and Siddique (2000) and Dittmar 

(2002), for example]. Some single-period equilibrium models address this issue by defining preferences 

over higher moments [e.g., Kraus and Litzenberger (1976), Chabi-Yo (2012), and Chabi-Yo, Leisen and 

Renault (2014)]. Our findings demonstrate, however, that the role of the higher moments in forming 

equilibrium demands and prices in the face of stochastic investment opportunities is so natural that even 

within MDE, under MV preferences and elliptical return distributions, they conspicuously appear. 

In this context, perhaps it is important to note the danger of misinterpreting the dependency on 

“only” instantaneous first two moments in continuous time formulations to be like the dependency on two 

moments in the static case. We must recognize the tradeoff between time and space in the continuous time 

case. The choice of different functions that instantaneous continuous time first two moments may assume 

allows inducing distributions with different specifications of higher moments, over any finite time interval.6 

The answer to the second TEQ is no:  we find that even MDE risk premia are not simple. They 

include a term, additional to the one in static models, which depends on the covariance between prevailing 

returns and future investment opportunities. 

The answer to the third TEQ is no:  we find that market portfolios are generally not MV efficient, 

thus, cannot serve as SDFs. 

Furthermore, as, perhaps, an unexpected finding, we identify future market return’s volatility as a 

priced factor and a component of the prevailing SDF (see also the following paragraph). This result has 

been confirmed empirically [see Chabi-Yo (2012)]. 

We offer insights into our results and what drives them. The first insight is that while, in general, 

dynamic equilibria offer a continuum of tradeoffs between income effects and substitution effects where 

 
6 In Vasicek (1977), for example, over any finite time interval, a common factor is normally distributed; in contrast, 
in Cox, Ingersoll and Ross (1985b), prices/outputs could, conditionally, have a log normal distribution, and 
productivity factors a non-central chi-squared one. 
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either or neither7 effect dominates, under our MDE there is only a single such tradeoff within which it is 

the substitution effect that dominates. 

The second insight is that Square Sharpe ratios sufficiently characterize future (stochastic) 

investment opportunities8 with a “dimension” of square returns.9 Moreover, covariances between returns 

and future investment opportunities shape risk premia with a dimension of cubic returns. This, in turn, 

induces a dependency on higher moments, elaborate risk premia, and MV inefficient market portfolios. 

The third insight is our identification of an equilibrium relation between period 2 market expected 

returns and market return volatility, scaled by the market risk-aversion level, implying market volatility is 

priced. Moreover, this pricing is foreseen by, and has implications for, period 1 demands and prices. An 

increase (decrease) in the covariance between prevailing returns and future investment opportunities results 

in an increase (decrease) in prevailing expected returns as a pricing adjustment to added (reduced) risk. 

We may characterize our MDE as a minimal extension of linear beta pricing models (such as the 

CAPM). However, we conjecture that our MDE choice could be considered as a first natural choice even 

over a larger set of commonly used asset pricing models (including overlapping generations, for example). 

Section 2 identifies the MDE; Section 3 analyzes and characterizes the MDE; Section 4 offers a 

discussion; and Section 5 concludes. 

2 MDE Identification 

2.1 Selecting Preferences 

MV preferences are an obvious candidate for preferences that are simple, plausible, and bring us 

closest to the static models. However, with MV preferences, as wealth increases, Arrow-Pratt’s absolute 

risk aversion measure (ARA) increases as well. This is a property that describes none of us. Thus, MV 

 
7 No dominating effect is only in the knife-edge case of logarithmic preferences that induce a single unit level of 
Arrow-Pratt’s relative risk aversion (RRA). We rule out the logarithmic case from our MDE choices (please see below) 
because it induces equilibria that are iid repetitions of single-period equilibria. See, for example, Mossin (1968), 
Hakansson (1970), and Feldman (1992). 
8 Liu (2007) studies the case where investment opportunities are characterized by Sharpe ratios in a continuous time 
framework. 
9 For simplicity we use the term “dimension” to describe quadratic and cubic rates of returns, though rates of returns 
are unitless. 
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preferences “cannot” be over wealth. 

We now examine potential model attributes and their implications for preferences. Path 

independence generally allows single-period representation. Single-period representation generally induces 

dependence on end of period wealth. Dependence on end of period wealth generally induces path 

independence—and so forth, creating a loop. One simple way of avoiding this “loop” is to allow returns’ 

periodic dependence, which induces path dependency. 

Moreover, geometric means, by construction, induce path independence, thus allowing for single-

period representation. The choice of preferences over mean-returns, however, corresponds to an emphasis 

on intermediate periodic outcomes that may include or correspond to periodic consumption. 

To summarize the implications of the above, we will not define preferences over wealth but over 

returns because of concerns about risk aversion. Further, due to concerns about path dependency, we will 

not define preferences over geometric mean returns. Therefore, we choose to define preferences over mean-

returns; thus, our choice is MV preferences defined over mean-returns.10 

2.2 The MDE 

Pursuing utmost simplicity, consider a two-period, three-date, 𝑡𝑡 = 0,1,2, Markowitz world with 𝑁𝑁 

risky securities, 𝑁𝑁 > 2, and one riskless security. Risky securities are nonredundant, with finite moments. 

There exists a representative investor with MV preferences and Arrow-Pratt risk-aversion measure 𝐴𝐴
2
. 

Security returns in excess of a constant risk-free rate are the 𝑁𝑁𝑁𝑁1 vectors 𝑅𝑅𝑡𝑡, prevailing through period 𝑡𝑡,

𝑡𝑡 = 1,2. Security returns are driven by fundamentals/state variables/productivity factors. Period 𝑡𝑡, 𝑡𝑡 = 0,1, 

first two, conditional on date 𝑡𝑡 fundamentals, moments of returns are 𝜇𝜇𝑡𝑡 ,𝛴𝛴𝑡𝑡. Let E𝑡𝑡(∙), Var𝑡𝑡(∙), and Cov𝑡𝑡(∙

,∙) be the, conditional on date 𝑡𝑡 fundamentals, expectations, variance, and covariance operators, 

respectively. The moments 𝜇𝜇𝑡𝑡,  𝜇𝜇𝑡𝑡+1 = E𝑡𝑡(𝑅𝑅𝑡𝑡+1), and  𝛴𝛴𝑡𝑡, 𝛴𝛴𝑡𝑡+1 = �Cov𝑡𝑡(𝑅𝑅𝑡𝑡+1,𝑖𝑖 ,𝑅𝑅𝑡𝑡+1,𝑗𝑗)�
𝑖𝑖,𝑗𝑗=1,…,𝑁𝑁

, are 𝑁𝑁𝑁𝑁1 

vectors and 𝑁𝑁𝑁𝑁𝑁𝑁 matrices, respectively. 

 
10 We argue below that our results are robust to the “less simple” case of compounded returns; see Section 4.3. 
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The representative investor period 𝑡𝑡 portfolio’s rate of return 𝑅𝑅𝑃𝑃𝑃𝑃+1, 𝑡𝑡 = 0,1, is 𝑅𝑅𝑝𝑝𝑝𝑝+1 = 𝜃𝜃𝑡𝑡+1T 𝑅𝑅𝑡𝑡+1, 

where portfolio weights, 𝜃𝜃𝑡𝑡+1, are 𝑁𝑁𝑁𝑁1 vectors. We note that portfolio weights are conditional on 

fundamentals. 

Preferences are over portfolios’ (arithmetic) mean excess returns over the two periods,11 𝑅𝑅�𝑃𝑃 ≜

𝑅𝑅𝑃𝑃1+𝑅𝑅𝑃𝑃2
2

, where 𝑅𝑅𝑃𝑃𝑃𝑃+1, 𝑡𝑡 = 0,1, is the representative investor’s period 𝑡𝑡 portfolio’s rate of return. The 

representative investor trades off mean and variance by choosing portfolio weights [𝜃𝜃1,𝜃𝜃2]: 

 Max
𝜃𝜃1,𝜃𝜃2

�E0(𝑅𝑅�𝑃𝑃) − 𝐴𝐴
2

Var0(𝑅𝑅�𝑃𝑃)�. (1) 

Note, 

E𝑡𝑡�𝑅𝑅𝑝𝑝𝑝𝑝+1� = 𝜃𝜃𝑡𝑡+1T 𝜇𝜇𝑡𝑡+1, 

Var𝑡𝑡�𝑅𝑅𝑝𝑝𝑝𝑝+1� = 𝜃𝜃𝑡𝑡+1T Σ𝑡𝑡+1𝜃𝜃𝑡𝑡+1, 
(2) 

where superscripts T denote the transpose operator. We note that all variables in the above equations are 

conditional on fundamentals. 

Let 𝜃𝜃𝑀𝑀𝑀𝑀+1 𝑡𝑡 = 0,1, be the market capitalization weights, or the market portfolio weights. The 

market portfolio returns, are thus, 𝑅𝑅𝑀𝑀𝑀𝑀+1,  𝑡𝑡 = 0,1,  𝑅𝑅𝑀𝑀𝑀𝑀+1 = 𝜃𝜃𝑀𝑀𝑀𝑀+1T 𝑅𝑅𝑡𝑡+1. 

We are now able to define the equilibrium. 

Definition. Equilibrium:  the representative investor holds optimal portfolio, which is the market portfolio.

 � 

The existence of a representative investor implies that, by construction, the market clears. 

3 MDE Characterizations 

We are now ready to characterize the MDE. 

3.1 Second Period Analysis 

Proposition 1 

 
11 As we are interested in the composition of risky assets holdings and risk premia, for simplicity, we define 
preferences over excess returns. 
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Conditional on period 1 fundamentals’ realizations, 

1. period 2 optimal portfolio weights, or market capitalization, are 

 𝜃𝜃2 = 2
𝐴𝐴
𝛴𝛴2−1𝜇𝜇2, (3) 

and 

2. period 2 risk premia, i.e., expected returns in excess of the risk-free rate, are 

 𝜇𝜇2 = 𝐴𝐴
2
𝛴𝛴2𝜃𝜃2. (4) 

Proof. See Appendix. 

Conditional on period 1 fundamentals’ realizations, the period 2 problem becomes the classical 

single-period one. 

We can now use Proposition 1’s results to further characterize period 2 equilibrium, specifically 

the moments of the market portfolio return. 

Corollary 1 to Proposition 1 

Conditional on period 1 fundamentals’ realizations, 

1. period 2 market portfolio’s expected return and variance are, respectively, 

 𝐸𝐸1(𝑅𝑅𝑀𝑀2) = 2
𝐴𝐴
𝜇𝜇2TΣ2−1𝜇𝜇2, (5) 

 Var1(𝑅𝑅𝑀𝑀2) = �2
𝐴𝐴
�
2
𝜇𝜇2TΣ2−1𝜇𝜇2, (6) 

and 

2. period 2 market portfolio’s square Sharpe ratio, 𝑆𝑆22, is 

 𝑆𝑆22(𝑅𝑅1) = 𝜇𝜇2T𝛴𝛴2−1𝜇𝜇2. (7) 

Proof. See Appendix. 

We are now ready to highlight an equilibrium property of the MDE that relates period 2 market 

portfolio’s Sharpe ratio and volatility. We will later demonstrate the implication of this property to the 

MDE equilibrium’s dependence on higher moments. 

If we substitute Equation (6) onto Equation (7), we get 
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 𝑆𝑆22 = �𝐴𝐴
2
�
2

Var1(𝑅𝑅𝑀𝑀2), (8) 

demonstrating that, in equilibrium, the period two conditional square Sharpe ratio is equal to a unitless 

coefficient times the market portfolio return’s variance, implying a dimension of square returns. Thus, we 

proved the following Corollary. 

Corollary 2 to Proposition 1 

The characterizations of period 2 square Sharpe ratios and (stochastic) investment opportunities 

have a dimension of “square returns.” � 

Thus, our MDE has the property that the unitless square Sharpe ratio of the market portfolio return, 

in equilibrium, becomes one to one with a variable representing square returns. 

Another interesting insight conveyed directly by Equation (8) is the equilibrium relation between 

market Sharpe ratios and volatility. The higher the volatility, the higher the Sharpe ratio required to mitigate 

its effects on the derived utility. Moreover, this required mitigation is increasing in the representative 

investor’s risk-aversion measure. 

We now proceed to analyze the more interesting period, period 1. We start by defining, the 

covariance between period 1 returns and the future (period 2) investments opportunity set. 

Definition. We define 𝑐𝑐1, the covariance between period 1 returns and future (period 2) investment 

opportunity set, as 

 𝑐𝑐1 ≜ Cov0(𝑅𝑅1, 𝑆𝑆22), (9) 

that is, 𝑐𝑐1 = �Cov0�𝑅𝑅1,𝑖𝑖 , 𝑆𝑆22��𝑖𝑖=1,…,𝑁𝑁. � 

We now characterize period 1, optimal portfolios, market capitalization, and risk premia. 

3.2 First Period Analysis 

Proposition 2 

1. Period 1 optimal portfolio or market capitalization is 

 𝜃𝜃1 = 2
𝐴𝐴
𝛴𝛴1−1(𝜇𝜇1 − 𝑐𝑐1). (10) 

2. Period 2 risk premia are 
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 𝜇𝜇1 = 𝐴𝐴
2
𝛴𝛴1𝜃𝜃1 + 𝑐𝑐1. (11) 

Proof. See Appendix. 

We now use Proposition 1’s results to further characterize period 1 equilibrium, specifically, 

optimal portfolios’ conditional Sharpe ratios and the stochastic conditional investment opportunity set. 

Corollary 1 to Proposition 2 

1. Conditional on period 1 realizations, the period 2 market portfolio’s Sharpe ratio sufficiently 

characterizes the stochastic investment opportunity set of the MDE. 

2. Higher moments than variance play a role in the MDE. 

3. There is no degeneration of MDE risk premia to those of single-period models, and MDE risk premia 

depend on higher moments. 

4. The MDE market portfolio is MV inefficient. 

Proof. Equations (10) and (11) demonstrate that MDE’s period 1 equilibrium demands and prices depend 

on the future (period 2) only through its Sharpe ratio (through their dependency on 𝑐𝑐1). 

This proves point 1 of the Corollary. 

As 𝑐𝑐1 is a covariance between returns and square Sharpe ratios—see the definition in Equation 

(9)—and as square Sharpe ratios in our MDE are proportional to the market portfolio variance, thus having 

a dimension of square returns—see Equation (8)—𝑐𝑐1 has a dimension of cubic returns, proportional to third 

moments. As 𝑐𝑐1 is integral part of the MDE’s demands and prices, see Equations (10) and (11), higher 

moments play a (substantial) role in the MDE. 

This proves point 2 of the Corollary. 

Equation (11) characterizes the MDE’s risk premia as a sum of two addends. The first corresponds 

to single-period risk premia and is similar, for example, to those of the terminal period, period 2, where 

there are no future opportunities, see Equation (4). The second addend is −𝑐𝑐1, which has the dimension of 

third moments, as does the MDE’s risk premia. 

This proves point 3 of the Corollary. 
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Finally, Equation (10) demonstrates that the component 𝑐𝑐1 takes optimal portfolio rules away from 

the single-period MV efficient demands. Only in the case where future investment opportunities are 

uncorrelated with prevailing ones will the period 1 market portfolio be MV efficient. 

This proves point 4 of the Corollary. QED 

We note that 𝑐𝑐1 corresponds, in Merton’s terminology, to demands to hedge changes in future 

investments opportunities. We will now highlight how this corollary answers the TEQ. Point 2 established 

a “no” regarding the first TEQ (dependency on higher moments) overlap of MDE and static models. 

Equation (11) shows that MDE’s risk premia are also functions of 𝑐𝑐1, which is an addend to the 

single-period risk premia. This demonstrates that MDE’s risk premia do not degenerate to those of single-

period ones. Moreover, we can also say that MDE’s risk premia depend on higher moments because 𝑐𝑐1 is 

a function of the third moment of returns. This establishes the second “no” regarding TEQ overlap. 

The MDE’s optimal demands or portfolio rules are equal those of the single-period ones only if 

𝑐𝑐1 = 0. Under non-zero 𝑐𝑐1, the addend to single-period demands in the equation for optimal demands, 

Equation (10), can be viewed as the, so called, “hedging demands” term, that Merton coined to describe 

this part of optimal demands. These generally take the representative investor’s portfolio away from the 

MV frontier, rendering their optimal portfolios MV inefficient. However, we may argue, following Merton, 

that in equilibrium it becomes optimal to “hedge” the changes in future investments opportunities. As these 

demands take the MDE (period 1) market portfolio away from the MV frontier rendering it “inefficient” 

and incapable of serving as the SDF, this establishes the third “no” regarding TEQ overlap. 

Still, the MDE’s optimal demands, as could be expected, are only a special case of demands in 

general dynamic equilibria. While an increase in risk aversion still reduces risky assets’ holdings, it affects 

the single-period demands and “hedging demands” in equal proportion. Also, a higher positive (negative) 

covariance between prevailing returns and future investment opportunities would always reduce (increase) 

holding of risky assets. 

Because in the MDE, 𝑅𝑅𝑀𝑀1 and 𝑅𝑅𝑀𝑀2 are the periodic market portfolio returns, we can now 
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specifically identify the SDF and demonstrate that the market portfolio is not the pricing kernel. 

Rewriting Equation (11) using Equations (9), and (8), gives 

 𝜇𝜇1 = 𝐴𝐴
2

Cov0 �𝑅𝑅1,𝑅𝑅𝑀𝑀1 + 𝐴𝐴
2

Var1(𝑅𝑅𝑀𝑀2)�. (12) 

We note that the arguments of the covariance operator in Equation (12) are random variables, 

conditional on period 1 fundamentals’ realizations.  

Equation (12) identifies, up to a proportionality constant, the SDF as 𝑅𝑅𝑀𝑀1 + 𝐴𝐴
2

Var1(𝑅𝑅𝑀𝑀2). 

We thus proved the following Corollary. 

Corollary 2 to Proposition 2 

The MDE SDF is, up to a proportionality constant, 𝑅𝑅𝑀𝑀1 + 𝐴𝐴
2

Var1(𝑅𝑅𝑀𝑀2). � 

As the SDF includes an addend additional to the market portfolio’s return, the market portfolio is 

not the pricing kernel. 

4 Discussion 

4.1 The Choice of MDE 

In a different context, it might be interesting to study an MDE choice over preferences, assets, 

payoffs, strategies, constraints, time (discrete versus continuous), agents (short-lived, long-lived, 

overlapping generations), state space (finite versus infinite, discrete versus a continuum), markets 

(exchange, production, contingent claims), and markets (complete versus incomplete). In our pioneering 

study, however, we believe that starting with choices relevant to the most studied and implemented models 

is a good approach. After all, these models earned their place endogenously, in competition with other 

models. It is our conjecture that our MDE will maintain a primary position even after such studies are 

conducted. We expect, though, that studying additional MDE will bring new insights. 

In identifying an MDE, we have two goals:  minimal extension of static models and maximal 

simplification of dynamic models. There is a tradeoff, of course, between relevance and simplicity. 

Naturally, the MDE’s choice is to opt for simplicity; relevance should be sought by other types of models. 
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An example of simplicity is our MDE state variable choice:  the periodic returns. On the other hand, where 

we could enhance the structure with “no material cost,” we chose to do so. Thus, we have multiple risky 

assets where three would be enough. 

We note that adding periods to our MDE, or allowing stochastic equilibrium interest rates, will 

mitigate neither the three “no’s” nor the market return’s volatility’s being a priced factor. 

4.2 Defining MDE 

A formal definition of MDE must involve numerous quantitative and qualitative dimensions. 

Further, it must be cardinal to facilitate aggregating over dimensions. We demonstrate below that ranking 

criteria are nonunique, subjective, and arbitrary. Thus, defining an MDE is illusive. 

We demonstrate the illusiveness of defining MDE by examining a definition of one MDE aspect, 

preferences. Defining minimal preferences requires definitions of various preferences’ dimensions. 

• The distribution of coefficients of the Taylor series expansion of utility functions. Consider 

two distributions. One is {0.33+∆, 0.33, 0.33−∆}, the other {0.33, 0.33+2∆, 

0.33−2∆}. Is a ∆ advantage in the first and third coefficients enough to reconcile a 

2∆ disadvantage in the second and third one? Ranking rules of such sequences are 

subjective, arbitrary, and nonunique. 

• The number of cross-sectional and intertemporal risk-aversion coefficients. Merton models 

have one coefficient for any number of periods. Epstein-Zin preferences have two 

coefficients for any number of periods. Kreps-Porteus preferences have 2𝑛𝑛 − 1 

coefficients for 𝑛𝑛 periods. Ordinal ranking is natural here, but the required cardinal ranking 

is arbitrary and subjective. 

• Whether preferences are time additive, of habit formation1, habit formation 2, etc. Even 

ordinal ranking, in this case, is nonunique, subjective and arbitrary. 

• The stochastic nature of the utility and at the differential nature of the utility. Ranking 

would be nonunique, subjective, and arbitrary 



14 

Then, one has to create a weighing scheme over various dimensions of preferences, which is, again, 

nonunique, subjective, and arbitrary. 

In addition to defining minimal preferences, one has to define other dimensions of the MDE and a 

weighing scheme across the various MDE dimensions. We trust that we have demonstrated that such a task 

is illusive as any outcome would be nonunique, subjective, and arbitrary. 

4.3 Single-Period Representation of a Time Series 

Considering a multiperiod problem, Cochrane (2014) aggregated a time series of payoffs into single 

points in the MV space, transforming the multiperiod model into a static one. While this might provide a 

useful, elegant transformation, the answers to the TEQ are clear (yes, yes, and yes) and it requires no further 

analysis. 

4.4 Arithmetic Mean Returns versus Compounded Returns 

An alternative specification to our MDE’s criterion choice of arithmetic mean (excess) returns 

would have been compounded (excess) returns of the form, say, 

 �1 + 𝑅𝑅𝑝𝑝1��1 + 𝑅𝑅𝑝𝑝2� − 1 = 𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2 + 𝑅𝑅𝑝𝑝1𝑅𝑅𝑝𝑝2. (13) 

We see that the outcome is similar to that of the MDE, with an added term of 𝑅𝑅𝑝𝑝1𝑅𝑅𝑝𝑝2. The 

implication is that the phenomena we detected would persist and additional ones might arise due to the 

added term. An interesting empirical question is whether this added term has significant impact despite 

being an order of magnitude smaller. 

5 Conclusion 

While the object of finance models is a dynamic environment, prevalent asset pricing 

implementations are consistent with static models, with respect to three essential asset pricing questions 

(TEQ):  dependency on higher moments, complexity of risk premia, and market portfolios being 

SDFs/pricing kernels/MV efficient. We already know that certain dynamic models, including Merton-type 

models and their various expansions, differ from static ones regarding the TEQ. In this paper, we aim to 

identify dynamic models that retain/capture the static properties regarding the TEQ. For this purpose, we 
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make the strongest assumptions that are likely to help capture the static properties and identify the 

“simplest/minimal” on all relevant dimensions, dynamic equilibria (MDE). We find that the MDE answer 

to the TEQ is “no,” “no,” and “no,” respectively. Furthermore, the future volatility of MDE market 

portfolios’ returns emerges as a pricing factor. This suggests that prevalent empirical asset pricing 

implementations are consistent only with static models. 

Our MDE can be viewed as the minimal extension to most common asset pricing implementations 

– CAPM/linear beta pricing models. Asset pricing models, however, are not generally nested. It would, 

then, be interesting to keep searching for MDE. We conjecture, however, that it would be difficult to 

identify other MDE that capture the static essential asset pricing issues. 

APPENDIX 

Proof of Proposition 1 

The period 2 problem, conditional on period 1 realizations, is 

Max
𝜃𝜃2

�E1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
� −

𝐴𝐴
2

Var1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
��. (A1) 

Conditional on period 1 fundamentals’ realizations, we denote period 2 utility and period 2 derived 

utility (or indirect utility function) as 𝑈𝑈1(𝜃𝜃2) and 𝐽𝐽1 respectively, we can define 

𝑈𝑈1(𝜃𝜃2) ≜ E1 �
𝑅𝑅𝑝𝑝1+𝑅𝑅𝑝𝑝2

2
� − 𝐴𝐴

2
Var1 �

𝑅𝑅𝑝𝑝1+𝑅𝑅𝑝𝑝2
2

�, (A2) 

and conditional on period 1 fundamentals’ realizations 

𝐽𝐽1 ≜ Max
𝜃𝜃2

�E1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
� −

𝐴𝐴
2

Var1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
��  (A3) 

or 

𝐽𝐽1 ≜ Max
𝜃𝜃2

{𝑈𝑈1(𝜃𝜃2)}. (A4) 

We can rewrite Equation (A1) as 

𝐽𝐽1 = Max
𝜃𝜃2

�
1
2
𝑅𝑅𝑝𝑝1 + E1 �

1
2
𝑅𝑅𝑝𝑝2� −

𝐴𝐴
2

Var1 �
1
2
𝑅𝑅𝑝𝑝2��, (A5) 

which, for finding optimal portfolio weights, is equivalent to 
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Max
𝜃𝜃2

�E1 �
1
2
𝑅𝑅𝑝𝑝2� −

𝐴𝐴
2

Var1 �
1
2
𝑅𝑅𝑝𝑝2��. (A6) 

Thus, conditional on period 1 realizations, the period 2 problem becomes a standard single-period MV 

problem, and optimal portfolio weights are the argmax of the solution to the following problem: 

 Max
𝜃𝜃2

�E1 �
1
2
𝜃𝜃2T𝑅𝑅2� −

𝐴𝐴
2

Var1 �
1
2
𝜃𝜃2T𝑅𝑅2��. (A7) 

The first-order condition is 

 𝜕𝜕
𝜕𝜕𝜃𝜃2

�E1 �
1
2
𝜃𝜃2T𝑅𝑅2� −

𝐴𝐴
2

Var1 �
1
2
𝜃𝜃2T𝑅𝑅2�� = 0 (A8) 

or 

 1
2
𝜇𝜇2 −

𝐴𝐴
4
Σ2𝜃𝜃2 = 0 (A9) 

or 

 𝜃𝜃2 = 2
𝐴𝐴
Σ2−1𝜇𝜇2. (A10) 

Because the second-order conditions are satisfied, 𝜃𝜃2, defined in Equation (A10), are period 2 

optimal portfolio, or market portfolio, or market capitalization, weights vector. 

This proves point 1 of Proposition 1. 

Rearranging Equation (A10) yields 

 𝜇𝜇2 = 𝐴𝐴
2
Σ2𝜃𝜃2, (A11) 

which are period 2 market risk premia. 

This proves point 2 of Proposition 1. QED 

Proof of Corollary 1 to Proposition 1 

Period 2 market portfolio’s conditional expected (excess) return is 

 E1(𝑅𝑅𝑀𝑀2) = 𝜃𝜃2T𝜇𝜇2 = 2
𝐴𝐴
𝜇𝜇2TΣ2−1𝜇𝜇2, (A12) 

where the second equality holds after a substitution using Equation (3). 

Period 2 market portfolio’s (excess) return variance is 
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 Var1(𝑅𝑅𝑀𝑀2) =  𝜃𝜃2TΣ2𝜃𝜃2 = �2
𝐴𝐴
�
2
𝜇𝜇2TΣ2−1𝜇𝜇2. (A13) 

Again, the second equality holds after a substitution using Equation (3). 

This completes the proof of point 1 of the Corollary. 

Now, use Equations (A12) and (A13) to obtain 

 𝑆𝑆22 = �E1(𝑅𝑅𝑀𝑀2)�2

Var1(𝑅𝑅𝑀𝑀2) = �𝜇𝜇2TΣ2−1𝜇𝜇2�
2

𝜇𝜇2TΣ2−1𝜇𝜇2
= 𝜇𝜇2TΣ2−1𝜇𝜇2, (A14) 

which gives Equation (7). 

This proves point 2 of the Corollary. QED 

Proof of Proposition 2 

Denoting 𝐽𝐽1 as the (total) derived utility, or period 1 derived utility, the period 1 problem is 

𝐽𝐽1 ≜ Max
𝜃𝜃1,𝜃𝜃2

�E0 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
� −

𝐴𝐴
2

Var0 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
��, (A15) 

which is not directly amenable to be solved under the Bellman’s principle of optimality.12 Using the laws 

of total expectation and total variance, we rewrite the Equation (A15) problem. Basak and Chabakauri 

(2010) and Björk, Murgoci and Zhou (2014) presented solutions to the problem in a continuous time 

context. Malamud and Vilkov (2018) use Basak’s insights to present a discrete time solution to a similar 

problem within an overlapping generations model. 

Max
𝜃𝜃1,𝜃𝜃2

�E0 �E1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
� −

𝐴𝐴
2

Var1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
�� −

𝐴𝐴
2

Var1 �E1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
���. (A16) 

Using Equation (A2), we can rewrite the problem in Equation (A16) as 

Max
𝜃𝜃1,𝜃𝜃2

�E0(𝑈𝑈1(𝜃𝜃2)) −
𝐴𝐴
2

Var0 �E1 �
𝑅𝑅𝑝𝑝1 + 𝑅𝑅𝑝𝑝2

2
���. (A17) 

Using the definitions in Equations (A4) and (A15), and period 2 optimal portfolio weights values, 

𝜃𝜃2, which we already determined, see Equation (3), we can rewrite Equation (A17) as 

 
12 Because expectation of a variance is not equal to variance of expectation, the Bellman equation loses its recursive 
property. See Basak and Chabakauri (2010). 
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Max
𝜃𝜃1

�E0(𝐽𝐽1) −
𝐴𝐴
2

Var0 �
1
2
�𝑅𝑅𝑝𝑝1 + E1�𝑅𝑅𝑝𝑝2����. (A18) 

We proceed by calculating the value of each of the two addends of Equation (A18). We will, then, 

identify the optimal values for period 1 portfolio weights, 𝜃𝜃1. 

We first identify the first addend of Equation (A18), 𝐽𝐽1, using Equation (A5). We substitute into it 

period 2 optimal portfolio weights values as determined in Equation (A10) and, further, substitute Equations 

(7) and (8). We have 

𝐽𝐽1 =
1
2
𝑅𝑅𝑝𝑝1 +

1
2

2
𝐴𝐴
𝑆𝑆22 −

1
2𝐴𝐴

𝑆𝑆22 =
1
2
𝑅𝑅𝑝𝑝1 +

1
2𝐴𝐴

𝑆𝑆22. (A19) 

Taking expectation of Equation (A19), we have 

E0(𝐽𝐽1) =
1
2
𝜃𝜃1T𝜇𝜇1 +

1
2𝐴𝐴

E0(𝑆𝑆22). (A20) 

Calculating the value of the second addend of Equation (A18) gives 

Var0 �
1
2
�𝑅𝑅𝑝𝑝1 + E1�𝑅𝑅𝑝𝑝2��� = Var0 �

1
2
𝑅𝑅𝑝𝑝1 +

1
𝐴𝐴
𝑆𝑆22�

=
1
4

Var0�𝑅𝑅𝑝𝑝1� + Var0 �
1
𝐴𝐴
𝑆𝑆22� + Cov0 �𝑅𝑅𝑝𝑝1,

1
𝐴𝐴
𝑆𝑆22�

=
1
4
𝜃𝜃1TΣ1−1𝜃𝜃1 + Var0 �

1
𝐴𝐴
𝑆𝑆22� +

1
𝐴𝐴
𝜃𝜃1T𝑐𝑐1. 

(A21) 

The first equality holds because of substitutions following Equations (5) and (7), and the last equality holds 

because of the use of the definition in Equation (9). 

Using the results in Equations (A20) and (A21), the first-order conditions become 

𝜕𝜕
𝜕𝜕𝜃𝜃1

�E0(𝐽𝐽1) −
𝐴𝐴
2

Var0 �
1
2
�𝑅𝑅𝑝𝑝1 + E1�𝑅𝑅𝑝𝑝2���� =

1
2
𝜇𝜇1 −

𝐴𝐴
2
�

1
2
Σ1𝜃𝜃1 +

1
𝐴𝐴
𝑐𝑐1�

=
1
2
𝜇𝜇1 −

𝐴𝐴
4
Σ1𝜃𝜃1 −

1
2
𝑐𝑐1 = 0. 

(A22) 

Rearranging Equation (A22), gives period 1 optimal portfolio, or market portfolio, or market 

capitalization, weights vector 
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 𝜃𝜃1 = 2
𝐴𝐴
Σ1−1(𝜇𝜇1 − 𝑐𝑐1). (A23) 

This proves point 1 of Proposition 2. 

Solving Equation (A23) for the market risk premia gives 

 𝜇𝜇1 = 𝐴𝐴
2
Σ1𝜃𝜃1 + 𝑐𝑐1. (A24) 

This proves point 2 of Proposition 2. QED 
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